
©2006. Renesas Technology Corp., All rights reserved.

Renesas Technology
Paul Mundt
paul.mundt@renesas.com
lethal@linux-sh.org

Superpages Revisted:
Transparent Application of Large TLBs on Embedded
Systems
2009-04-06

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.2

The Coverage Problem

TLBs on embedded systems tend to roughly be around 32 or
64 entries on average.

PAGE_SIZE is generally 4k or 8k.
8k is commonly seen on platforms with aliasing VIPT L1 caches
that wish to avoid aliasing altogether.

These same systems support a wide range of page sizes to
maximize TLB coverage in a controlled environment.

Very few embedded platforms make use of this fact in the kernel
today.
The classic embedded problem, the desire for small page sizes as
well as a reduction in the amount of time spent servicing TLB misses.

While generally spending the entire product lifetime under heavy
memory pressure, often without swap.

For anyone unfortunate enough to be taking notes, this is what we
are focusing on today.

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

The Coverage Problem

Most of these systems lack global PTE bits and must wire TLB
slots with fixed translations to preserve across a TLB flush.

A scheme often used/abused for fixmaps.
This all depletes entries and reduces coverage even more.

Some systems employ special support for fixed section
mappings.

Often PMD-granular section mapping.
Which generally see a reduction in permission bits over their PTE
counterparts.

Other times extra TLBs are added.
These may include more emphasis on caching behaviour and less
on access control.

A common case for mapping lowmem cached/uncached and
flipping section bits in ioremap().

And may or may not include a miss exception.
Generally pre-faulted with fixed mappings, or piggybacked on
top of the first-level TLB miss.

Some of these will use their own page tables.
Making superpage promotion/demotion even more tedious.

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

Ways that large TLBs are presently used

ioremap() and friendsioremap() and friends

cached/uncached lowmem mappingcached/uncached lowmem mapping

hugetlbfs/libhugetlbhugetlbfs/libhugetlb

Sparsemem vmemmapSparsemem vmemmap

Architecture Architecture ““extensionsextensions”” for abusing softwarefor abusing software--managed TLB managed TLB
entry loading.entry loading.

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

Ways that large TLBs are presently not usedWays that large TLBs are presently not used

DynamicallyDynamically
ie, Page frame coalescing for order promotion and other academicie, Page frame coalescing for order promotion and other academic
evils.evils.

GenerallyGenerally
Huge pages and large contiguous physical blocks of memory are a Huge pages and large contiguous physical blocks of memory are a
scarce resource, and generally cease to be available shortly aftscarce resource, and generally cease to be available shortly after er
system startup.system startup.

Fortunately workloads are generally fixed, access patterns and Fortunately workloads are generally fixed, access patterns and
behaviour is well understood, and performance degradation is behaviour is well understood, and performance degradation is
quantifiable.quantifiable.

Combined with things like ZONE_MOVABLE, it's still possible to gCombined with things like ZONE_MOVABLE, it's still possible to get et
back to a state where large TLBs can still be used often enough back to a state where large TLBs can still be used often enough to to
provide a measurable performance boost.provide a measurable performance boost.

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

Overview of the SH-4A/SH-X2 MMU Architecture

Semi-harvard TLB layout.
64-entry Unified TLB containing I/D-TLB entries.
4-entry I-TLB, loaded from the U-TLB and managed entirely by
hardware.

PMB (Privileged Space Mapping Buffer)
16-entry section-mapping TLB.
No miss exception, so must be either statically configured or loaded
from a special page table piggybacking the TLB miss.
Limited access control capabilities, only usable for kernel mappings.

Usable for user mappings if using single-address space mode for
uClinux on MMU parts where the role of the MMU is scaled back.

Wide range of page sizes.
4k/8k/64k/256k/1MB/4MB/64MB in TLB.

512MB also on SH-5 TLB, generally used for lowmem mapping.
16MB/64MB/128MB/512MB in PMB.

64-bit PTEs for extended TLB mode, primarily for extended
protection bits, which also necessitates a 64-bit pgprot.

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

ioremap() and friends

Nothing terribly interesting to note here.

The largest possible sizes are used and scaled down from.
Often establishing both PMD and PTE mappings, depending on size.

This is also a tie-in for multiple TLBs.
SH-X2 and later parts first attempt PMB mappings to avoid building up
TLB-bound page tables unnecessarily.
Has the undesirable side-effect that things like unmap_vm_area()
have a lot of linear scanning to do before finding TLB-bound page
tables (if at all) when doing PMB tear-down.

Not a hot path by any stretch of the imagination, so only mildly
bothersome.

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

cached/uncached lowmem mapping

Greatly simplifies ioremap() and friends in that caching
attributes for a given mapping can be adjusted by flipping the
high bits.

Some SH parts (and most MIPS, too) support identity-
mapped segmentation with varying cache attributes natively
without having to go through the TLB.

While this makes changing caching attributes easy and greatly reduces
TLB misses, it also wreaks havoc on available virtual address space,
negating the usefulness of things like sparsemem vmemmap, crimping
vmalloc space, etc.
Others simply set up mappings to provide the same functionality.

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

hugetlbfs/libhugetlb

Generally requires static reservation of entries at boot time.

Variable page sizes are supportable, but the optimal sizes will
generally depend on target workload.

While there is no “one size fits all”, and huge pages are a
scarce resource, they are also the simplest interface for
applications getting a handle on large TLBs.

Still requires careful profiling of the workload to determine optimal
number of reservations, sizes, etc.

Most applications have no awareness of huge pages, so a
more transparent option is needed for bridging the two.

So we opt for the simplest solution any time a minor userspace
problem arises -- hacking the libc directly and telling applications what
they really want.

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

libhugetlb and uClibc, together at last

uClibc contains a pluggable allocator backend that makes
experimenting with various implementations fairly trivial,
which makes it a good match for experimenting with
libhugetlb.

With integration of libhugetlb in the allocator backend, large
allocations that match the huge page size are automatically
backed with huge pages if they are available.

This behaviour can be enabled/disabled explicitly for applications, or
simply left to the hugetlb code to try and do the best job it can.

Even with fairly dumb implementation, applications using
large allocs for anonymous memory get a measurable
performance gain.

In sample workloads this has resulted in gains from 5-25% on a
loaded system.
If application access patterns are more random, or only small
allocations are employed by the system workload, performance
degradation is marginal.

However, memory is wasted if more pages are reserved than are
used.

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

Sparsemem vmemmap

Similar to the ioremap() implementation, where the mappings
are established using the largest possible size and scaling
down.

Far too heavy on virtual address space to be of general use
on constrained platforms.

.. but a reasonable trade-off for platforms that value more
effective TLB utilization over address space conservation.

If you aren't counting individual pages of available virtual address
space while subsequently losing count of the number of bounce
buffers, this can mean you!

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

Magical Architecture Extensions (MAE)

Systems with software-managed TLBs allow for much greater
flexibility in how the TLB miss is serviced.

Which may not even entail loading an entry in to the TLB that took the
initial miss.
A combination of order recording and page hinting can trivially be
used for platforms with enough free PTE bits to transparently
construct a TLB entry that matches the entry on the initial page fault.

In practice this can be optimized down to a handful of additional
instructions given that the page table walking is taking place
regardless of order hint.

Presently this does not handle PTE->PMD transitions, which
remains something to investigate in future work.

Page hinting introduced by s390 for aiding guests and hypervisors.
In the case of faulting in a section mapping, alignment hinting can
offer suggestions whether walking an additional page table is worth
the extra overhead or not.

In the case where access is mispredicted, overhead increases, but
integrity is maintained as the TLB is still loaded as a fallback.

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

Magical Architecture Extensions (MAE)

In the case of hardware loaded TLBs, fewer optimizations can
be made, requiring PTEs to be order encoded, and requiring
many more generic code changes.

While many optimizations can still be made for these platforms, the
lack of software-management prohibits any intelligent decision making
at TLB miss time.
On the other hand, it is not always a net benefit, as the system needs
to support page sizes that match the most frequently used page
orders.

It always depends on the workload.
Fortunately on embedded systems, these things are measurable!

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

Summary

While there are many trivial options for using large TLBs more
transparently on embedded systems, there has been little to
no effort in this area.

In the past interest in this area has been an all or nothing.
Empirical testing on the other hand suggests that even making use of
large TLBs for anonymous memory is measurable enough to make it
worthwhile.
Even if TLBs grow larger and the coverage problem is lessened,
systems will still prefer a tiny page size.

For embedded systems in general, having control over the
applications and workloads that the system is exposed to
allows for careful profiling and figuring out where the
bottlenecks are.

While being under constant TLB pressure is not often considered a big
problem on modern systems, measurement has shown that there is
still significant performance degradation on even the most typical
embedded workloads.

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

Questions?

Non-Confidential ©2006. Renesas Technology Corp., All rights reserved.

Concerns?Concerns?

